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Howard S. Taylor
Department of Chemistry, UniVersity of Southern California, Los Angeles, California 90089

Edwin L. Sibert III*
Department of Chemistry and Theoretical Chemistry Institute, UniVersity of Wisconsin Madison,
Madison, Wisconsin 53706

ReceiVed: October 5, 2005; In Final Form: NoVember 29, 2005

The dispersed fluoresence spectrum of the ground electronic state of thiophosgene, SCCl2, is analyzed in a
very complex region of vibrational excitation, 7000-9000 cm-1. The final result is that most of the inferred
excited vibrational levels are assigned in terms of approximate constants of the motion. Furthermore, each
level is associated with a rung on a ladder of quantum states on the basis of common reduced dimension
fundamental motions. The resulting ladders cannot be identified by any experimental means, and it is the
interspersing in energy of their rungs that makes the spectrum complex even after the process of level separation
into polyads. Van Vleck perturbation theory is used to create polyad constants of the motion and a spectroscopic
Hamiltonian from a potential fitted to experimental data. The eigenfuntions of this spectroscopic Hamiltonian
are rewritten as semiclassical wave functions and transformed to a representation that allows us to analyze
and assign the spectra with no other work other than to utilize concepts from nonlinear dynamics.

I. Introduction

Bigwood et al.1 experimentally determined the dispersed
fluoresence spectrum of SCCl2, probing the zero to 15 000 cm-1

wavenumber vibrational excitation spectral region. About half
of the 200 observed transitions were either assigned or fit, the
great majority of these transitions occurring below 7000 cm-1.
Above this energy, and in particular in the energy regime from
7000 to 9000 cm-1, the spectrum is quite complex, and
conventional interpretative methods2 failed in the sense of
assigning quantum numbers, which are quasiconstants of the
motion, in the amount needed for the six degrees of freedom
system. Moreover, the vibrational motions underlying the
spectrum were unable to be revealed. A goal that was achieved
was to use the assigned transitions to fit the spectral data to a
functional form representing a parametric potential hypersurface.
Bigwood et al.1 then used this hypersurface to propagate select
zero-order states at energies near 9000 cm-1 to aid in the
interpretation of the intramolecular vibrational redistribution of
energy.

Although one can use a potential energy surface in conjunc-
tion with quantum chemistry to supply wave functions or
propagated wave packets to interpret spectra, the effort to make
such detailed calculations for all but a few states in six degrees
of freedom is prohibitive, especially in light of the high density
of vibrational levels in the region of interest. Additionally, there
is the certainty that these wave functions would be generically
so complex as to not show the nodal patterns needed for

assignment and to not allow any sorting into ladders of states
based on a common dynamics. Even without the generic
complexity the existence of six degrees of freedom belies the
ability of the wave function to be viewed for purposes of
interpretation.

Faced with these complexities, researchers, exploiting the
classical-quantum correspondence principle, have had great
success using classical mechanics to gain novel insights into
the nature of eigenstates in energy regimes that are valid beyond
the normal mode limit.3-10 The key idea is that knowledge of
the topology of the underlying classical phase space elucidates
both eigenvalue patterns and eigenstate structures. Periodic
orbits,3,4,9 homoclinic oscillations,10 and bifurcations3,4,7,8have
all proven to be invaluable concepts for interpreting molecular
spectra. In addition, there are often mulitiple constants of motion,
acetylene11-14 and water3,7,15being two excellent examples, that
can be utilized to further simplify the analysis of the spectra.
One advantage of these constants is that the classical dynamics
can be visualized in a reduced dimensional space.3

Our work is distinct from those studies. We carry out a
semiclassical analysis of the quantum wave functions in a
representation that allows us to use the classical-quantum
correspondence principle to assign our spectra in a manner that
is consistent with common phase space structures such as stable
periodic orbits and zones of nonlinear resonance.16 As such, no
classical trajectory results are needed in our analysis.

We take as our starting point the Van Vleck perturbative
method13,17-20 which we use to create an effective Hamiltonian.
This block-diagonal, multiresonant spectroscopic Hamiltonian† Part of the special issue “John C. Light Festschrift”.
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can then be diagonalized to determine the eigenstate wave
functions in the number representation for each of the blocks,
the blocks being defined by the polyad quantum numbers. In
contrast to that approach, here we transform the Hamiltonian
to the corresponding action-angle representation. The beauty
of the action-angle representation is that it allows one to reduce
effectively the dimension of the Hamiltonian by transforming
to a new set of angle variables, where the transformed
Hamiltonian only depends on a subset of the new angle
variables. Quantization of this Hamiltonian and its subsequent
eigenstate analysis allows us to visualize the wave functions
and clarify which of the myriad of possible resonant interactions
are important. Here all but the simplest of computations cease
to be used, and our semiclassical analysis is employed to assign
states.

The semiclassical analysis was developed in previous studies
of complex vibrations for such molecules as acetylene,13,14

CHBrClF,21 N2O,22 DCO,23 CDBrClF,24 and CF3CHFI.25 The
analysis allows inspection of the density and phases of its
eigenfunctions previously calculated in the Hamiltonian deriva-
tion process but now transformed to a reduced dimension
semiclassical action-angle representation. This reveals extremely
simple albeit unfamiliar topologies that give quantum numbers
by simply counting nodes and phase advances.

The topology also allows us to sort most states, even though
they have unfamiliar forms, into dynamically different excitation
ladders of states. Here these ladders are associated with different
regions of phase space. The rungs of these ladders intersperse
in energy causing the spectral complexity. No experimental
procedure allows such a sorting. To demonstrate the power of
this approach, we will analyze in detail a specific polyad of
states whose energies are approximately 8000 cm-1 and which
seem to form some of the most complex spectral line patterns
that we have studied.

Even in classically chaotic regions guiding spinal points,
trajectories, or planes that correspond to averages over regional
periodic orbits can easily be drawn from these eigenfunctions
as the structure about which localization takes place. The guiding
dynamic elements when transformed back to the full dimen-
sional configuration space reveal the internal molecular motions.

The spectroscopic model Hamiltonian results are sensitive
to model changes in the potential. This coupled with the fact
that our analysis is based on second-order perturbation theory,
should lead one to expect the eigenvectors to be qualitative.
This is correct. Nonetheless, much of the interesting topologies
found here are robust to modest potential changes and to the
order of perturbation theory, even though the details of the
interleaving of the rungs of the ladder will certainly change.
From our perspective, the important issue is to demonstrate the
utility of the approach for analyzing wave functions of a
multiresonant Hamiltonian in a strongly mixed regime where
traditional methods fail entirely. The sensitivity presents no
problem for the purpose of sorting assigning and extracting
dynamics.

II. Van Vleck Perturbative Results

We have chosen the rectilinear normal mode Hamiltonian as
our starting point for the calculation of the effective Hamiltonian.
For SCCl2 this Hamiltonian takes the simple form

where the small inverse moment of inertia terms are neglected.

The potential is that of Strickler and Gruebele,26 this potential
being similar to that of Bigwood et al.1 Following Nielsen,17

we expand the Hamiltonian in the form

whereλ is the perturbation parameter. The potential terms of
ordern are included inHv

(n-2). This Hamiltonian is reexpressed
in terms of harmonic oscillator raising and lowering operators.

The Van Vleck transformations are accomplished via a
succession of canonical transformations,

whereT(n) ) exp{iλn[S(n), ]}. TheS(n) are chosen such that

has the desired form through ordern.18 This transformed
Hamiltonian is written in terms of raising and lowering operators
that obey the same commutation relations, e.g., [a, a†] ) 1, as
those for the harmonic oscillator. BothHv andKv have zero-
order contributions that describe uncoupled harmonic oscillators,
whose descriptions are given in Table 1.

There are many different formsKv can take.19 Given the
normal-mode frequencies we have chosen theS(n) such that each
of the following operators

commute with the HamiltonianK̂v when off-diagonal terms
greater than ordern are neglected. HereV̂i ) ai

†ai is the
number operator. Equivalently, theS(n) are chosen such that the
matrix representation ofKv is block-diagonal. These operators
are found by examining the normal-mode frequencies and
determining which sets of states are likely to be resonantly
coupled. With this information one finds the above operators
using an algorithm such as the Kellman vector model.11 It should
be noted that although any three independent combinations of
these operators can be used, we found the above choice of
operators to be the most convenient. It should also be noted
that the number of additional constants depends entirely on the
symmetry, the couplings, zero-order normal-mode frequencies,
and the energy range over which one hopes to carry out the
analysis.

The final Hamiltonian takes the form of harmonic oscillators
plus anharmonic corrections

TABLE 1: Calculated Normal Mode Frequencies (cm-1)

mode symmetry ω̃i description

1 a1 1153.26 SdC stretch
2 a1 507.51 C-Cl stretch
3 a1 290.60 Cl-C-Cl bend
4 b1 470.30 out-of-plane
5 b2 845.85 C-Cl stretch
6 b2 329.20 Cl-C-Cl bend

Hv ) Hv
(0) + λHv

(1) + λ2Hv
(2) + ‚‚‚ + λnHv

(n) (2)

Kv ) T(n)‚‚‚T(2)T(1)Hv (3)

K̂v ) ∑
{mb,nb}

cmb,nb∏
i)1

6

[(ai
†)miai

ni] (4)

K̂ ) V̂1 + V̂2 + V̂5

L̂ ) 2V̂1 + V̂3 + V̂5 + V̂6

M̂ ) V̂4 (5)

Kv ) ∑
i

6

ω̃i(V̂i +
1

2) + ∑
iej

xij(V̂i +
1

2)(V̂j +
1

2) + Wqm (6)

Hv )
1

2
∑

k

Pk
2 + V(Q) (1)
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The xij are given in Table 2 and the off-diagonal contribution
Wqm is given in Table 3. The first two contributions of Table 3
appear at first order in perturbation theory. They are

The eigenstates are linear combinations of the number basis
states. These in turn are eigenstates of the first terms in eq 6
and, of course, are separable.

The goal of this paper is to use semiclassical ideas to
understand the shapes of the eigenfunctions of the above
Hamiltonian. Although the eigenfunctions of the original
Hamiltonian and the effective Hamiltonian will be different, if
in both cases we assume that the raising and lowering operators
are those for harmonic oscillators, the differences are generally
small. The general shape and nodal structure is always the same.
The work of Zúñiga provides a clear example.20 The need for
such a semiclassical analysis can be seen using a simple
illustrative example.

The illustrative example is that which is obtained if all the
off-diagonal terms are set to zero with the exception of thek156

term. The corresponding classical Hamiltonian is trivially
integrable yet the resulting eigenstates are strongly mixed in
three degrees of freedom. Thek156 terms mixes the six zero-
order number basis states|5 - p, 2, 2, 0, 0+ p, 2 + p〉 where
p ) 0-5. Figure 1 shows the highest energy eigenstate obtained
from diagonalizing the corresponding 6× 6 matrix.

In the next section we will describe our methods for choosing
new semiclassical wave functions for interpreting the dynamics.
This method removes all the cyclic coordinates in the classical
Hamiltonian and thus leads to greatly simplified wave functions.
We will see that Figure 1 will simplify to probability distribution
shown in Figure 2. The coupling leads to a localized wave
function along an appropriately chosen coordinate that describes
a special phase relation between the three oscillators. We now
turn to a discussion of the transformations needed to define such
coordinates.

III. Reduction and Semiclassical Wave Functions

The transition from the quantum Hamiltonian given in eq 6
in terms of creation and destruction operators to the correspond-
ing classical Hamiltonian is done by first bringing the operators
into symmetric order and then applying the semiclassical
substitution rules27

whereIj andφj are the classical action and angle variables for
the degree of freedomj. By symmetrization we mean that we
write a product of an annihilation operator with a creation
operator of the same degree of freedom as (aa† + a†a)/2 and

TABLE 2: Calculated xij (cm-1) from Second-Order
Perturbation Theory

i j xij i j xij

1 1 -3.149392 2 5 -4.502738
1 2 0.248292 3 5 -1.788787
2 2 -1.101397 4 5 -3.165362
1 3 0.069427 5 5 -4.848639
2 3 -1.230195 1 6 -1.489753
3 3 -0.160529 2 6 -0.307362
1 4 -2.093491 3 6 0.048541
2 4 -2.737102 4 6 -3.861793
3 4 -2.161802 5 6 -1.703855
4 4 2.302492 6 6 -0.325367
1 5 -4.464485

TABLE 3: Off-Diagonal Coupling Terms (cm-1) through
Second-Order Perturbation Theory Written in the Form of
Eq 4a

m ncoeff cm,n

k156 -10.0317 0 0 0 0 1 1 1 0 0 0 0 0
k526 -10.8573 0 0 0 0 1 0 0 1 0 0 0 1
k231 0.0491 0 1 2 0 0 0 1 0 0 0 0 0
k261 -0.0452 0 1 0 0 0 2 1 0 0 0 0 0
k125 4.1329 1 1 0 0 0 0 0 0 0 0 2 0
k36 -0.8228 0 0 2 0 0 0 0 0 0 0 0 2

a The couplingWqm includes the hermitian conjugates of these terms.

Wqm
(1) ) k156(a1

†a5a6 + hc) + k526(a5
†a2a6 + hc) (7)

Figure 1. Probability distribution plotted as a function of theQ5 and
Q6 coordinates for increasing values ofQ1 going from (a)-(f). This
state is the highest energy state obtained from diagonalizing the
Hamiltonian with all off-diagonal coupling set to zero except thek156

term. Thek156 term mixes the zero-order states|5 - p, 2, 2, 0, 0+ p,
2 + p〉 wherep ) 0-5.

Figure 2. Semiclassical probability distribution function corresponding
to that of Figure 1 plotted as a function ofψ1 defined in eq 16.

aj f Ij
1/2 exp(-iφj) aj

† f Ij
1/2 exp(iφj) (8)
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then the number operator transforms into classical action minus
1/2. The resulting classical Hamiltonian is

with

and

where the coefficients ofWcl are given in Table 3. The first
two terms inWcl correspond to those inWqm

(1) of eq 7.
In analogy to the constants of motion given in eq 5 of the

quantum Hamiltonian, the classical Hamiltonian has three
conserved quantities. They are

Be aware that the numerical values of the classical conserved
quantities differ from the corresponding quantum con-
served quantities because of the classical zero points of
action. The quantum ground state corresponds to a value1/2
for all the classical actions of the elementary degrees of
freedom.

Next we use the conserved quantities to reduce the system
to one with three degrees of freedom. We apply a canonical
transformation from the variablesIj andφj, j ) 1-6 to the new
actionsJ1, J2, J3, M, K, L and canonically conjugate anglesψj,
j ) 1-6. To make the interpretation of the new actions easy,
we chooseJj ) Ij for j ) 1, 2, 3. In addition, we choose the
new anglesψ1, ψ2 andψ3 as such combinations of the old angles
that always move slowly and come to a complete stop in the
case of frequency coupling by the resonant interactions. One
possible choice with these favorable properties is

By transforming the classical Hamiltonian of eq 9 to these new
coordinates and momenta one finds that the coupling is not a
function of the anglesψ4, ψ5, ψ6. This is readily seen if we

focus on just the coordinate dependence of the coupling which
is

Moreover, by solving forψ1, ψ2 and ψ3 and taking the time
derivative of the result to give the effective frequenciesωk(J),
here just written asωk, we observe thatψ̇1, ψ̇2 andψ̇3 are zero
whenω1 ) ω5 + ω6, ω2 ) ω5 - ω6 andω3 ) ω6, respectively.
Hence as said above, the transformation is chosen to make the
new variables move slowly and come to a complete stop in the
case of frequency coupling by the most important (see Table
3) resonant interactions. As will be seen, such localizations will
result in semiclassical wave functions being localized in the
same direction. This will allow the recognition that this wave
function is affected by the given resonance. It will also help in
the sorting of such wave functions in classes affected by
particular resonances.

As a result of the form of eq 17 the corresponding conjugate
actionsM, K, L can be treated as if they were parameters, and
thereby the system is reduced to one with three degrees of
freedom. The configuration space of the reduced system is the
torus T3 of the angle variablesψ1, ψ2, ψ3. The cyclic angles
conjugate to the constants of the motion have been removed.

The final goal of our whole strategy is to connect individual
quantum states with some particular motion of the atoms
described in the original normal coordinates of the original
Hamiltonian. A necessary first step is to relate quantum states
with the classical reduced configuration spaceT3. In other words,
we must use thisT3 as the domain on which the quantum wave
functions are constructed and plotted. Taking the eigenstates
as the column vectors coming out of the diagonalization of the
effective Hamiltonian matrix, the conversion into a function on
T3 requires two steps. The first one is to construct the wave
function as a function of angle coordinates, and the second is a
reduction of the quantum system to one of three degrees of
freedom in analogy to the classical reduction. We do not have
any exact method for carrying out the first step. However,
because all our explanations rely heavily on semiclassical
thinking, it is sufficient to construct semiclassical wave func-
tions; this can be done with amazingly little numerical effort.

We represent and replace the number states indexed byn,
i.e., the basis states in which the Hamiltonian matrix is given
and the eigenfunctions are represented, by the periodic plane
waves on the angle torus as

This too is the semiclassical eigenfunction of the Hamiltonian
in eq 10. Here the quantitiesn andφ without any index are 6
component vectors, and in the argument of the exp function
we have the scalar product of these vectors. Note that this
equation corresponds to applying Schro¨dinger’s quantization rule
to the action and angle variables of the system. Of course, this
only holds semiclassically because Schro¨dinger’s rule is only
valid to the lowest two orders inp in general canonical
coordinates. Now the expansion of an eigenstate ofH into
number states as it comes out of the numerical diagonalization
translates into the expansion of the wave function into periodic

Hcl ) Hcl,0 + Wcl (9)

Hcl,0 ) ∑
j

ωjI j + ∑
jek

xjkIjIk (10)

Wcl ) 2k156I1
1/2 I5

1/2 I6
1/2 cos(φ1 - φ5 - φ6) +

2k526I5
1/2 I2

1/2 I6
1/2 cos(φ5 - φ2 - φ6) +

2k231I1
1/2 I2

1/2I3 cos(φ1 - φ2 - 2φ3) +

2k261I1
1/2 I2

1/2I6 cos(φ1 - φ2 - 2φ6) +

2k125I1
1/2 I2

1/2I5 cos(φ1 + φ2 - 2φ5) +
2k36I3I6 cos(2φ3 - 2φ6) (11)

K ) I1 + I2 + I5 (12)

L ) 2I1 + I3 + I5 + I6 (13)

M ) I4 (14)

I1 ) J1 I2 ) J2 I3 ) J3 I4 ) M

I5 ) K - J1 - J2 I6 ) L - K - J1 + J2 - J3 (15)

φ1 ) ψ1 + ψ5 + 2ψ6 φ2 ) ψ2 + ψ5 φ3 ) ψ3 + ψ6

φ4 ) ψ4 φ5 ) ψ5 + ψ6 φ6 ) ψ6 (16)

Wcl ) 2k156I1
1/2 I5

1/2 I6
1/2 cos(ψ1) +

2k526I5
1/2 I2

1/2 I6
1/2 cos(ψ2) +

2k231I1
1/2 I2

1/2I3 cos(ψ1 - ψ2 - 2ψ3) +

2k261I1
1/2 I2

1/2I6 cos(ψ1 - ψ2) +

2k125I1
1/2 I2

1/2I5 cos(ψ1 + ψ2) +
2k36I3I6 cos(2ψ3) (17)

øn(φ) ) exp{inφ} (18)
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plane waves on the configuration torus. That is it translates into
the Fourier decomposition of the wave function on the torus.

Next we reduce the dimensionality of the basis functions and
thereby also all linear combinations of them as for example the
eigenfunctions to functions of the three angle variablesψ1, ψ2,
ψ3. First we plug into eq 18 the expression of the old anglesφj

in terms of the new anglesψj as given in eq 16. In the argument
of the exp function we obtain

Now any eigenfunction only contains contributions from basis
functions belonging to one polyad, i.e., to one value of all the
conserved quantitiesK, L, M (here considered as combinations
of the quantum excitation numbers of the original degrees of
freedom). Therefore the dependence on the anglesψ4, ψ5 and
ψ6 is a common phase factor of all basis function and therefore
a phase factor in front of the whole eigenfunction. Such global
phase factors are irrelevant and can be dropped and thereby the
eigenfunctions are reduced to functions of the three angle
variablesψ1, ψ2 and ψ3; i.e., they have become functions on
the reduced classical configuration spaceT3.

In summary, the basis state with excitation numbersnj, j )
1, ..., 6 will be denoted by

where we suppress theK, L, andM quantum numbers to simplify
notation. Note that it is not necessary to specify the values of
n4, n5, n6, they can be reconstructed from the knowledge of the
conserved quantitiesK, L, M. If an eigenfunction comes out of
the diagonalization of theH matrix as a linear combination

of basis functions, then the corresponding semiclassical wave
function onT3 is given as

We imagine representing the torusT3 as a cube with identified
opposite boundary points. A point on any of the cubes
boundaries corresponds to one in a similar position on the
opposite boundary. This is just the 3-dimensional generalization
of a point on a rolling circle being able to be represented on a
graph with angle varying from 0 to 2π but with enforced
periodic boundary conditions. A 3-dimensional torusT3 is a
Cartesian product of three rings, thereby implying a cube with
identified opposite boundary conditions. In the numerical
examples in the next section we plot density (magnitude
squared) and phase of some eigenfunctions on 2-dimensional
sections of this cube. Also on such 2-dimensional sections
opposite boundary points have to be identified such that the
topology of the sections becomes the one of a 2-dimensional
torus. Unfortunately, 3-dimensional perspective plots are too
confusing to be useful.

The states of the quantum Hamiltonian haveA1 and B2

symmetries. In the interaction part of the quantum Hamiltonian
this is evident in that there is an additional symmetry constraint
(cf. Table 3) thatm5 + m6 - n5 - n6 must be even. Equivalently,

states with even values ofN̂ ) V̂5 + V̂6 cannot couple to states
with odd valuesN̂. Given our definition of the constant of
motion L̂ in eq 5, this constraint leads to an effective Hamil-
tonian where states with even values ofV̂3 cannot couple to
states with odd values ofV̂3.

In the classical Hamiltonian this symmetry is observed in
the coupling of eq 17, where there is always a factor of 2 in
front of the ψ3 term. Considering the periodic boundary
conditions, i.e., return to the same point when the variable
changes by 2π, this causes the discrete symmetryψ3 f ψ3 +
π of the Hamiltonian. Accordingly, the eigenfunctions only have
contributions from basis functions wheren3 is either even or
odd only; i.e., the eigenfunctions can be sorted into symmetric
ones and antisymmetric ones with respect to this discrete
symmetry. Further symmetries ofH, which, however, are of
no special interest in the following are a shift of any angle by
2π and a simultaneous replacement of all angles by their
negatives. These two symmetries guarantee the periodicity of
the system on the toroidal configuration space and the time
reversal symmetry of the Hamiltonian system.

IV. Numerical Examples for Semiclassical Wave
Functions

We give numerical examples for the polyadK ) 7, L ) 14,
M ) 0. It contains a total of 288 states, and within the polyad
we enumerate the states according to increasing energy.

The structure of the eigenfunctions at the energetically upper
end of the polyad is most simple. Therefore we start with a
discussion of the uppermost state, i.e., state number 288 of the
polyadK ) 7, L ) 14, M ) 0. Its energy is 8217 cm-1. The
six parts of Figure 3 show density (magnitude squared) and
phase of the semiclassical wave function in the three planesψ3

) 0, ψ2 ) π and ψ1 ) π, respectively. We see immediately
that the density is concentrated along the 1-dimensional
organization centerψ1 ) ψ2 ) π. There are no nodal lines;
therefore both transversal excitation numbers are zero. In
addition, the phase advance along this fiber is zero; therefore
the longitudinal excitation number is also zero. In this sense
the highest state, i.e., state 288, is the ground state of the
organizational fiberψ1 ) ψ2 ) π.

We use the word fiber above as the idealized central element
of the dynamics. The organization element is a periodic orbit
and its surrounding. This surrounding might be a bundle of
concentric tori in the case of a stable central periodic orbit or
some bundle of chaotic trajectories that run parallel to the central
periodic orbit on average in the case of an unstable central
periodic orbit.

Now we discuss the type of motion that is represented by
this organization center and the interpretation of the excitation
numbers relative to it. Along this fiber the angleψ3 moves
freely, whereas the two anglesψ1 andψ2 are locked at the values
π. Looking at eq 16 of the canonical transformations, we see
that locking ofψ1 to a constant value means that the original
mode 6 is coupled to the beat between modes 1 and 5 or
alternatively and equivalently mode 5 is coupled to the beat
between modes 1 and 6. Along the same line of reasoning the
locking of ψ2 to a constant value means that the original mode
6 is coupled to the beat motion between modes 2 and 5 or
alternatively the coupling of mode 2 to the beat between modes
5 and 6. The simultaneous lockings ofψ1 andψ2 to constant
values also imply a 2:1 frequency coupling of mode 6 to the
beat between modes 1 and 2. Mode 3 always runs freely, and
the longitudinal excitation number, the phase advance divided
by 2π, is the excitation number of mode 3. The transverse

nφ ) n1φ1 + n2φ2 + n3φ3 + n4φ4 + n5φ5 + n6φ6 ) n1(ψ1 +
ψ5 + 2ψ6) + n2(ψ2 + ψ5) + n3(ψ3 + ψ6) + n4ψ4 +

n5(ψ5 + ψ6) + n6ψ6 ) ψ1n1 + ψ2n2 + ψ3n3 + ψ4M +
ψ5K + ψ6L (19)

|n1, n2, n3〉 (20)

|øk〉 ) ∑
n∈polyad

ck,n|n〉 (21)

øk(ψ1,ψ2,ψ3) ) ∑
n∈polyad

ck,n exp{i[n1ψ1 + n2ψ2 + n3ψ3]}

(22)
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excitation numbers indicate to which degree the couplings are
out of phase or to which degree the motion fluctuates around
the coupling point.

If we consider states at lower energy, then we encounter
approximately 130 further states having various longitudinal and
transversal excitation numbers organized around the same fiber.
One of the lowest ones in energy of this group is state 96 at
energy 7650 cm-1. In Figure 4 we show density and phase of
this state in the planesψ3 ) 0, ψ2 ) - ψ1 andψ2 ) ψ1 + π/2,
respectively. From these plots it is evident that the transversal
quantum number in the diagonal direction istd ) 0, the
transversal excitation number perpendicular to the diagonal is
tp ) 1, and the longitudinal quantum number isl ) 9. With
such a high longitudinal excitation the fibers lead to some
wiggles inψ1 and inψ2 directions and the density is no longer
almost constant along the fibers. Nonetheless, fibers rotating
around inψ3 directions stay clean. Note how the nodal plane is
a plane of discontinuities of the phase.

If both transversal excitation numbers are large, then it
becomes difficult to see a clean transverse structure because
most of the density is pushed to the opposite sides of the torus,
i.e., close toψ1 ) 0 and/or toψ2 ) 0. In particular, the fiber in
the ψ3 direction throughψ1 ) 0 andψ2 ) π seems to be the
natural central fiber for a whole group of states in the middle
of the polyad. In such cases it becomes more natural to count
nodal lines from such opposite points. Incorporating this

possibility into the scheme discussed so far adds approximately
30 further states clearly organized into fibers running inψ3

direction.
At the lower end of the polyad many states are organized

around a different organizational element, namely, around the
planeψ2 ) 0. As a representative example we show in Figure
5 plots of the semiclassical wave function for state 10 at energy
7414 cm-1. The various parts of the figure show density and
phase in the planesψ3 ) 0, ψ2 ) 0 andψ1 ) 0, respectively.
We see immediately how the density is concentrated around
this organizatorial plane and that the phase function is simple
in this plane only and has discontinuities outside. The singu-
larities of the phase function become most evident in planeψ1

) 0; see part f of the figure. The transverse quantum number is
t ) 0; the two longitudinal quantum numbers arel1 ) 0 andl3
) 8.

In the motion represented by this organization element the
anglesψ1 andψ3 move freely, whereas angleψ2 is locked to a
constant value. As before, the locking ofψ2 implies that in the
original modes mode 6 is coupled to the beat between modes 2
and 5. Going up in energy, we find approximately 70 states
organized around the same organizational element. In Figure 6
we present plots for state 132, which is one of the highest ones
in this scheme at energy 7708 cm-1. The various parts of the
figure show density and phase in the planesψ3 ) 0, ψ2 ) π/5
and ψ1 ) π/4, respectively. In this state there is a transverse
excitation, and the planeψ2 ) 0 itself is a nodal plane; therefore
we show the plot in the parallel planeψ2 ) π/5, which is a
plane of high density. Note that the phase function in this plane
of high density is a continuous deformation of a periodic plane
wave whereas the phase function has singularities outside; see

Figure 3. Semiclassical wave function of state 288 with energy 8217
cm-1. Left panels show the density (magnitude squared) and right panels
show the phase as functions of two coordinates indicated for a fixed
value of the third coordinate. In density plots, density decreases from
pink, blue, green, to red. In the phase plots, the colors change from
white, light blue, yellow to gray as the phase increases in increment of
π/2 from 0 to 2π. In all the plots opposite boundary points of the square
have to be identified to convert the square into a 2-dimensional torus.

Figure 4. Slices of density (left) and phases (right) of the semiclassical
wave function of state 96 with energy 7650 cm-1. Otherwise the same
as Figure 3.
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parts d and f of the figure. From the plots we read off the
quantum numberst ) 1, l1 ) 1 andl3 ) 0.

Going up in energy, the states show more and more variation
of density inside of the planeψ2 ) constant of high density.
More and more fibers inψ3 direction appear, and accordingly,
the other scheme discussed before becomes the more natural
one to apply. Note that the energy of the state shown in Figure
6 is higher than the energy of the state shown in Figure 4. This
demonstrates that the two ladders of states, discussed so far,
interlace and make the total spectrum appear irregular and
difficult to analyze even though most states belong to one of
two rather simple and regular progressions of states.

In addition to these two long regular ladders of states, there
are states that do not fall into these two schemes, this further
increasing the complexity of the spectra. First there are states
that show a regular, clean and simple structure of completely
different type. To each one of such other organizational schemes,
we could only find very few states. A good example is state
100 at energy 7654 cm-1 shown in Figure 7. The various parts
of the figure show density and phase of the semiclassical wave
function in the planesψ3 ) 0, ψ2 ) - ψ1 andψ2 ) ψ1 + π,
respectively. The only plane in which we could find a rather
clean and regular phase function is the planeψ2 ) ψ1 + π. In
this plane we read off the longitudinal excitation numbersl1 +
l2 ) 7 andl3 ) 8. Note that because of mixing of basis functions
only the combinationl1 + l2 in the organization plane has a
well-defined value whereas the excitation numbersl1 and l2
themselves do not have specific values. Seen from the plane
ψ2 ) ψ1 + π the transverse excitation number ist ) 0. This
state does not fit well into any of the two schemes discussed
above. There are a few more states with a similar density pattern

but different longitudinal excitation numbers in the planeψ2 )
ψ1 + π. The phase coupling between the new anglesψ1 and
ψ2 means for the original degrees of freedom a coupling of the
degree of freedom 6 to half of the beat frequency between the
degrees of freedom 1 and 2. There is also a small sequence of
states with a clean and simple phase function in planesψ1 ) 0.

Finally, there are states that look completely irregular. As a
representative example we show state 98 at energy 7652 cm-1

in Figure 8. The various parts show density and phase in the
planesψ3 ) 0, ψ2 ) 2π/5, andψ1 ) 0, respectively. In the
density we do not recognize any clean nodal pattern and the
phase function is not simple in any plane that could serve as a
reasonable organizational center. Note that the phase has
singularities also in the planeψ2 ) 2π/5, which is the plane of
highest density and which normally would be a natural candidate
for an organizational structure. The phase is simple along some
fibers in three directions but it is not evident what the transverse
structure of these fibers is. This function seems to be a mixture
of various patterns caused by state mixing because of near
accidental degeneracy. There are many more similar cases, and
some of such mixed states can be interpreted after demixing
with the appropriate neighboring states.

Note how close in energy the states of Figures 4, 7, and 8
are. This demonstrates the interlacing of sequences belonging
to different organizational patterns. Without a careful inspection
of the wave functions a separation of the subsequences belong-
ing to the various organizational structures is impossible, and
we only recognize the irregular complete spectrum.

V. Conclusions

The complex eigenstate structure of SCCl2 has been analyzed.
Starting from the fitted potential of Strickler and Gruebele,26

Figure 5. Slices of density (left) and phases (right) of the semiclassical
wave function of state 10 with energy 7414 cm-1. Otherwise the same
as Figure 3.

Figure 6. Slices of density (left) and phases (right) of the semiclassical
wave function of state 132 with energy 7708 cm-1. Otherwise the same
as Figure 3.
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the Van Vleck perturbation method was used to create a
spectroscopic Hamiltonian and three polyad constants of the
motion. Taking the classical limit and employing a canonical
transformation, the number of the degrees of freedom was
reduced to three, a number that allows for visual inspection of
wave functions. In our chosen reduced configuration space angle
variables we can infer whether particular classical motions
become phase locked and hence semiclassical eigenfunctions
to localize when the motion occupied a region of phase space
where a particular resonance was active. This localization
enabled the visual sorting of the eigenstates into ladders of states
based on identified causal resonances. Assignment was carried
out by counting nodes and phase advances associated with the
density and phase of the eigenstate, respectively. For a large
majority of states for which this was possible the three new
values of nodal and angle quantum numbers plus the three
polyad quantum numbers made up an assignment based on six
approximate constants of the motion.

Two important long and several other short ladders of states
were recognized and assigned. A generic drawing of the spinal
organizing center (a torus of lower dimension, here a line and
a plane) in each ladder about which the states of the ladder
localize, was itself the most fundamental reduced dimension
dynamic motion that the ladder states quantize. An approximate
transformation can be made on this organization center to show
it in the full six dimensions. Such a task is not rewarding as
viewing anything in six dimensions presents problems.

A significant number of states, about 25%, did not fall on
any ladders. Our experience is that many of these could be
shown to be due to a quantum and/or classical mixing. The
former occurs when several states on the same ladder are

accidentally degenerate. The result are states with nearby
energies that combine the original states linearly. As such,
different linear combinations of these states can be made to show
typical ladder type motions corresponding to missing rungs.
Classical mixing is created when the flow seems to jump back
and forth between two motions corresponding to two different
resonant regions of phase space, i.e., between that of two ladders.
We made no attempt here to carry out such steps in the analysis.
There will also be some states so mixed up that it will be
fruitless to do so.

The success of the analysis stems from five characteristics:
(1) The qualitative insight of nonlinear dynamics. (2) The said
conversion of the quantum problem in full dimension to a
semiclassical one in reduced dimension by use of a canonical
transform that takes advantage of the polyad and other constants
of motion to remove cyclic angle coordinates. (3) The choice
of the reduced angle variables to be sums of the full dimension
angles configured to ensure that the former have zero velocity
when the rational ratio resonance frequency condition is met.
This leads to a predictable localization of those of the quantized,
now semiclassical wave functions, which are affected by the
particular resonance. In reverse, the localized appearance of the
reduced dimension wave function reveals which resonances
govern it and makes sorting simple. (4) The revealing use of
plots of phase advances as well as the usual density. (5) The
fact that the spectroscopic as opposed to the initial Hamiltonian
contains only the most important interactions, leaving out those
that are small, albeit trajectory and wave function disfiguring
ones. This allows for the identification of the good, here polyad,
constants of the motion, a problem unsolved for the initial
Hamiltonian.

Figure 7. Slices of density (left) and phases (right) of the semiclassical
wave function of state 100 at energy 7654 cm-1. Otherwise the same
as Figure 3.

Figure 8. Slices of density (left) and phases (right) of the semiclassical
wave function of state 98 at energy 7652 cm-1. Otherwise the same as
Figure 3.
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